
WORKFLOW ASCENDANT

6.1

DEVELOPER’S GUIDE

  

CONCERNING HORIZON ASCENDANT, INC.
Horizon Ascendant is a software publishing company software whose flagship product is
Workflow Ascendant, an all-in-one design template which allows individuals with
minimal programming experience to develop robust workflow applications in an IBM
Notes or Web 2.0 / Responsive environment. Horizon Ascendant also offers a range of
services around that software package including customer development, training and
consulting.

www.horizonascendant.com

COPYRIGHTS AND TRADEMARKS
The information contained in this manual is confidential and subject to license. In
particular (but not limited to), this confidentiality concerns the invention of virtual
and extended states, the inventive manner in which events are defined and invoked
via code abstraction in state documents and the implementation of near real-time
delegation.

The information contained in this document can be modified without prior notification
and represents in no way a commitment on the part of Horizon Ascendant.

IBM Notes and Domino are trademarks of the IBM Corporation.

Horizon Ascendant, Inc. Page i

Chapter 1 - Introduction v ...

1.1) General v ..

1.2) Benefits vi ...

1.3) Principles vii ..

1.4) Roles and Reserved Names viii ...

1.5) Recommended Practices ix ...

1.5) About This Guide x ...

Chapter 2 – Process: Routing Documents xi ..

2.1) General xi ...

2.2) Simple Document Routing xii ...

2.3) Manual Document Routing xiii ...

2.4) Automatic Document Routing xiv ..

2.5) Manual and Automatic Document Routing xv ..

2.6) Selective Operations xvi ..

2.7) Parallel Operations xvii ...

2.8) Inclusive Operations xviii ...

2.9) Parallel and Inclusive Operations xix ...

2.10) Extended Parallel Operations xx ...

2.11) Extended Sequential Operations xxi ...

2.12) Child Documents xxii ...

2.13) Email Notifications xxiii ...

2.14) Actions (Comments) xxiv ..

2.15) Historical Text xxv ..

2.16) Document References xxvi ..

2.17) Alert Timeouts xxvii ..

2.18) Time Based Routing xxviii ...

Chapter 3 – Constraints: Specifying Users xxix ..

3.1) General xxix ..

3.2) Roles xxx ..

3.3) Fields xxxi ...

3.3) Roles and Fields xxxii ..

3.4) User Stack (Organizational Hierarchy) xxxiii ..

3.5) State Stack xxxiv ...

3.6) External (ERP, RDBMS …) xxxv ..

Horizon Ascendant, Inc. Page ii

Chapter 4 – Events: Directing Execution xxxvi ..

4.1) General xxxvi ...

4.2) Initialization xxxvii ..

4.3) Modification Control (Field) xxxviii ...

4.4) Modification Control (Panel/Section) xxxix ..

4.5) Validation Control (General) xl ..

4.6) Validation Control (Custom) xli ..

4.7) In-State Controls xli ...

4.8) Timed Events xliii ..

Chapter 5 – Content: Managing Data xliv ...

5.1) General xliv ...

5.2) Field Types xlv ..

5.3) Fields xlvi ...

5.4) Panels / Sections xlvii ...

5.5) Document Layouts xlviii ...

5.6) Simple List Creation xlix ..

5.7) Simple List Usage l ...

5.8) Tiered List Creation li ...

5.9) Tiered List Usage lii ...

5.10) Tables liii ...

5.11) Bar Charts liv ..

5.12) Gantt Charts lv ..

5.13) Panel/Tab Visibility lvi ...

5.14) Document Visibility lvii ..

Chapter 6 – General References lviii ..

6.1) General Web Interface lviii ...

6.2) Notes Admin Interface lix ...

6.3) Workflow Document lx ..

6.4) Delegation Document lxi ..

6.5) Admin ACL Entry Document lxii ..

6.6) Admin Field Document lxiii ...

6.7) Admin Gantt Task Document lxiv ..

6.8) Admin Language Document lxv ..

6.9) Admin Reference Document lxvi ...

Horizon Ascendant, Inc. Page iii

6.10) Admin Role Document lxvii ..

6.11) Admin State Document lxviii ..

6.12) Admin Time Trigger Document lxix ..

Appendix A – Licensing lxix ..

Appendix B – Administration lxxi ...

Appendix C – Debugging lxxii ..

Appendix D – @Formulas and Reserved Field Names lxxiii ..

Appendix E – List Classes lxxiv ..

Appendix F – Script Library (WA Application Specific) lxxv ...

Appendix G – JavaScript lxxvi ..

Appendix H – Methodology lxxvii..

Horizon Ascendant, Inc. Page iv

Chapter 1 - Introduction

1.1) General

Workflow Ascendant is an all-in-one design template which allows individuals with minimal
programming experience to develop robust workflow applications in a responsive web
environment. Anchored in a coherent methodology, this development model has been refined over the
years through extensive experience in working with large companies in an international environment.
IBM Notes developers can leverage their existing expertise with minimal knowledge in web
technologies. Non IBM Notes developers can easily adapt to Workflow Ascendant’s “plug and play”
component approach. End-users can intuitively navigate workflow documents.

All aspects of a process are defined via easily configurable documents. This includes document
states, routing rules, notifications, time triggers, etc. There are no “black boxes” to deal with,
providing complete visibility and direct control over every aspect of the workflow. The source code of
Workflow Ascendant is exposed.

Workflow Ascendant is the proprietary software owned by Horizon Ascendant Inc. Use of this
Software and derived applications from the Software are subject to the terms and conditions of the
Horizon Ascendant Master Subscription License Agreement. Please review the terms of this document
carefully. By using the Software and/or derived applications, you agree to all of the terms contained
therein. Briefly here, applications developed using Workflow Ascendant are licensed on a subscription
basis per IBM Notes Storage Facility database instance: 95 € / nsf file / month.

We highly recommend that you view the various presentation and training videos made available
on our web site: www.horizonascendant.com. These videos demonstrate and explain in great detail
the various mechanisms of Workflow Ascendant and how they affect application behavior. After viewing
these, you should have a firm grasp of the methodology which underlies this workflow development
tool.

All the materials needed to get you going are available on the Horizon Ascendant web site. This
includes the basic Workflow Ascendant template; videos along with the actual applications used
therein, additional sample applications as well as a complete Domino environment to run those
applications. To note that provision of the latter in no way confers licenses to use that software. It is
made available only to provide you a jump start – you will need to obtain corresponding licenses from
the IBM Corporation for applications put into production.

Use this guide as a reference. In addition to systematically presenting Workflow Ascendant, it has
been designed to provide easy access reminders to assist you in the context of you developing your
workflow applications.

Our well wishes to you in your development efforts from all of us here at Horizon
Ascendant!

.

Horizon Ascendant, Inc. Page v

1.2) Benefits

Workflow Ascendant allows you to rapidly create Business Process Management applications with
the latest web functionality USING A COHERENT AND COMPREHENSIVE METHODOLOGY.

• Minimal end-user training costs. Avoid the “not another application to learn” syndrome.
Once users learn how to use one application developed with Workflow Ascendant, they know
how to use any new ones later put in place as they all operate by the same principles: only
the data/content changes.

• Minimal maintenance costs. Workflow Ascendant developed applications are designed such
that volatile elements (the process, email notifications, allocating specific users, etc.) are
configured in easily understood documents (by version!) while more stable and complex
elements (code) are referenced as stand-along modules in a centralized code library. And as
is true for end-users, a system administrator need only understand how to manage one of
these applications in order to manage any new ones.

• Minimal development costs. Workflow Ascendant has been designed to leverage existing,
traditional IBM Notes developer skills. Develop fast and efficiently. Seeing is believing. We
invite you to take a look at the various presentation videos contained on our web site.

A few specific benefits to cite:

• Routing Conditions. As rules are rooted in a methodology - mix and match them to suite your
needs: manual and automatic routing; selective, parallel, inclusive, extended parallel and
extended sequential operations; automatically create child documents; route documents
based on time events, etc.

• Workflow Actions. Send personalized emails, launch agents and update document fields
based on document state changes.

• Reference Allocation. Automatically assign unique and sequential references to documents.

• Counters / Delays. Automatically send emails and/or update document fields when a trigger
is activated or deactivated.

• Real-Time Delegation. Users can designate replacements (while away from the office, for
example). Control is automatically returned to the original users after the designated
period.

• Intervention History. Each intervention is automatically recorded along with the number of
days spent at that step in the process.

• Display Statistics Graphically. Display Bar Charts and Gantt Charts for your end-users via
plug-and-play components.

• Version Control. Migrate easily from one workflow version to another. All existing
documents adhere to the previous process while new documents follow the new workflow.

• Multi-lingual end-user environment. Change languages with the click of a button.

• Multi-date format. Force all dates to appear in a specific format (American or European) -
regardless of the date parameters set on user’s PCs.

• Rich Test Environment. Simulate the passing of time via built-in agents to test your
workflow definitions. Variable logging levels allow you to monitor every aspect of the
workflow process.

• Integrated Responsive Web Design. Automatically adjusts to the characteristics of the
device being used (mobile phone, tablet, desktop), making your Workflow Ascendant
applications out-of-the-box ready for mobile access.

Horizon Ascendant, Inc. Page vi

1.3) Principles
Processes

• An IBM Notes Form contains all the data associated with a workflow document and
corresponds to a collection of State (configuration) documents which define the process.

• Each State document has a unique name (identifier) in the context of a given process.

• State documents are connected to each other via a Current State – Next State relationship.

• The behavior of a given workflow document is dictated by the definitions contained in the
corresponding State document while in that state.

• The State document entitled $created$ is always the first state in the workflow.

• A State document which has no Next State is known as a Terminal State (archived).

• Each State document is comprised of a set of rules, each of which is associated with a given
Constraint.

• Constraints refer to a profile of those who can intervene in a workflow document at that
state.

• Workflow documents advance in the process when a user selects the Send button.

• A workflow document will be automatically archived when the Send button is selected if the
following state is a Terminal State or if there are no valid users defined for the next state
(which constitutes an undefined error condition).

Constraints
• Constraints refer to the profiles of those who can intervene in a workflow document at a

particular state.

• A Constraint consists of either a role name (in the initial state only) or a field name (in all
other states).

• In a workflow document, the corresponding field of a State document constraint must
resolve to a list of user names.

• The aforementioned list of user names are the only individuals who can intervene in the
workflow document at that particular state.

• Workflow Ascendant provides several mechanisms by default to facilitate the assignation of
individual user names to the various roles and fields of a workflow application.

Content
• Who can modify a workflow document at a given point in time is dictated by the constraints

defined in the corresponding State document.

• In addition, Workflow Ascendant provides a number of mechanisms by which to define which
parts of a document the aforementioned individuals can modify.

• Information in workflow documents can be initialized and controlled by routines referenced
in the various State documents.

• Routines which initialize and control data in the workflow documents, some of which are
supplied by default and others supplied by the workflow developer, are contained in a
centralized code library.

Horizon Ascendant, Inc. Page vii

1.4) Roles and Reserved Names

ROLES
• [WAArchive]. Workflow Ascendant automatically assigns the current user (field

WACurrentAuthors) to this role when a document arrives at a terminal state.

• [WAListRI]. Those individuals who are responsible for managing lower level configuration
documents such as lists accessed in the workflow documents.

• [WAManager]. Those individuals who are responsible for managing the database. By default,
the administrative portion of Workflow Ascendant is only visible to users assigned to this
role.

• [WARefAlloc]. Workflow Ascendant automatically assigns the current user (the server
specified in the active Language document) to this role when a document is awaiting
reference allocation. This is the case if you are working in a distributed environment and
the replica you are working with does not reside on that server.

• [WASupervisor]. Those individuals who can see all documents.

FIELD NAMES
• WAAuthor. The user name of the individual who created the workflow document.

• WACurrentAuthors. The list of user names who can intervene in the document at that
moment in time.

• WACurrentAuthorsDisplay. The list of current user names displayed to the end users in the
various views.

• WACurrentState. The name of the workflow document’s current state.

• WADocRef. Contains the unique reference allocated to the workflow document.

• WAErrorMessage. Contains any error messages which block advancing the document in the
workflow.

• WAFormName. The process name displayed to end users.

• WAHistoryAuthors. The list of users who have intervened in the workflow document to
date.

• WAReaders. The list of users who can visualize the workflow document (in addition to those
who have or who can modify the workflow document).

• WAVersionRef. The version of the workflow document.

Horizon Ascendant, Inc. Page viii

1.5) Recommended Practices

• Information Completeness. A workflow document should contain all the information
necessary for a responsible individual (RI) to make a decision regarding the next step in the
process.

• Process Ignorance. Individuals who intervene in a given process should generally not need
to know what that process is – only what they need to do when it is their turn to intervene
in the workflow.

• Next State Coherence. Choices to be made by a RI relative to a given dossier should be
presented in a consistent way across a given workflow and across applications. An example
of this would be to always present the following choices in the same order: To be modified,
Rejected, Approved.

• Data Modification. One and only one individual should be responsible for modifying any
given piece of data in the workflow document (to ensure data integrity). For those cases
where modifications need to be made, the workflow document should be routed back to the
responsible individual (such as the document author).

• Comments. Each individual who intervenes in the workflow should have a field reserved for
his or her usage to add any and all comments related to that dossier. To note this is
particularly essential in the context of a request for modification (as mentioned prior).

• Email Notifications. When a document is advanced in the workflow, those who are next in
line to intervene should be notified by email with a document link back to the original
workflow document. It is also often the case that all those who have intervened in the
document are notified when the document is eventually archived (or rejected).

Horizon Ascendant, Inc. Page ix

1.5) About This Guide

This guide is designed to be used in conjunction with videos and applications (WAApplication01.nsf
and WAApplication02.nsf) provided on the Horizon Ascendant website. The videos demonstrate
what the various mechanisms look like in operation to the end-user while the applications provided
hands-on experience in using them. The guide illustrates (in most cases graphically) the components
which make up those mechanisms and (hopefully) serves as an ongoing reference in developing
workflow applications.

The objective of this guide is not to demonstrate how to put those mechanisms in place. As most of
the “development” involves configuring documents, a large majority of these manipulations should be
straightforward. In cases where they are not, however, videos have been provided to assist in this and
others will continue to be added as time goes on and the need for such becomes apparent.

This guide was created with you the developer in mind.
• One concept, one page. Everything regarding a given topic is put right in front of you.
• Consistent presentation:

o Purpose – a concise description of what the section is about
o What it looks like – typically what the end-user sees in operation
o How to make it happen – an illustration of the components behind the displayed

functionality
o Additional notes and references – where to go for additional information

• Graphical presentation. Visually see how components are connected to each other.
• Hyperlinks. Select Ctrl+Click on entries in the index or any blue highlighted text to navigate

through various subjects in the document. Select Alt+<left arrow> to return to where you were
previously.

Horizon Ascendant, Inc. Page x

Chapter 2 – Process: Routing Documents

2.1) General

The process or workflow for a given type of document is defined in State documents. Contained in
these documents are all rules / process related definitions.

State documents are categorized first by version, then by form (process) and finally by state. The
current workflow version for a given process is stored in the active Language document. When that
version value is changed, newly created workflow documents will follow the new State documents
while those already in the process will follow the previous ones. Also stored in the Language document
are the actual Notes form names which corresponds to the Form Names (an alias) that the user sees.

Workflow States are connected by Current State – Next State relationships. Detailed in each State
document, these relationships define the paths of the workflow. In the example above, if the user
selects the option Approved (followed by the Send button) in state Manager, the document will be
routed to state Director.

The following sections demonstrate some of the many ways to route documents. What is not
addressed is how specific users are designated as being those responsible to intervene at a given state.
This is discussed in detail in Chapter 3 – Constraints: Specifying Users. Note that the applications
referenced here are configured with sample users (available in the default configuration for download):

• a1/Horizon
• blue/Horizon
• Etc.

Horizon Ascendant, Inc. Page xi

2.2) Simple Document Routing
PURPOSE

Simple Document Routing is when there is only one next state defined from the current state. This
is typically the case when a user submits an initial request to be approved by a manager. In that
scenario, the user selects the Send button and the document advances to that state. In the Notes
client, no choices are presented to the end user and the document advances directly.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

[*] in the initial state indicates that any user with access to the database can create a document of this
type.
$created$ is a reserved word and always refers to the initial state in a process.

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xii

Only one selection is
available here for the end

The result after selecting
Send from the initial state
$created$ in the process

State document V01
(version), DOC101 (process),
$created$ (state)

2.3) Manual Document Routing
PURPOSE

Manual Document Routing indicates that the user is a given a choice as to where to advance the
document. The user selects the desired option from the drop down list followed by the Send button.
The workflow document is then forwarded accordingly. In the Notes client, the user first selects the
button Send, upon which a dialog box is presented from which to make the selection.

WHAT IT LOOKS LIKE

!

!

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xiii

Multiple selections are made
available to the user in state
Manager

The resulting state of the
workflow document is
Director after the user
selects Approved followed by

State document V01, DOC101,
Manager. Note the alias
Approved which is presented
to the user in place of

2.4) Automatic Document Routing
PURPOSE

Automatic Routing advances a document in the workflow according to a set of predefined rules.
What we have seen up to this point in time are Manual Rules which allow the user to select the next
state. Upon selecting the Send button, Workflow Ascendant automatically determines the next
document state and advances it based on the conditions defined in the State document evaluated
against values stored in the workflow document.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

The last frame to the right directly above forms an If-Then, If-Then, …Else statement (exactly like the
@If command) and are evaluated from top to bottom. The last entry in this list must always be @True
(the default condition). Automatic rules must always have the same display name per responsible
individual (in this case Approved).

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xiv

Two documents are created
with different total amounts
(as seen from an iPhone X)

From state Manager, the user
selects Send for both
documents which are in turn
routed to two different states

2.5) Manual and Automatic Document Routing
PURPOSE

Manual and automatic rules can be combined in the same state. A classic example of this is a
manager who may send a request back to the author, reject the request or approve it. In the latter
case however, the document may take a different path depending on the amount of the request. If the
amount is less than or equal to, say, 500, the document will be sent to a Director. If, however, the
amount exceeds 500, it will be sent to the CEO. In the corresponding State document, the first two
rules will be manual, the last two rules automatic.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

Note that manual rules have numbers (1 and 2 here) while automatic rules have letters (a and b here).

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xv

Four documents are created
with different total amounts

From state Manager, one
document is sent back to the
author, another is rejected
(displayed in the view
Archived) and the remaining
two (50 and 500) are

2.6) Selective Operations
PURPOSE

Different constraints (discussed in Chapter 3) can be combined within the same state. When this
occurs, users only see the next states associated with their constraints. This is often referred to as
Next State Visibility. The easiest way to understand this is in the context of an example.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

Note that in this example, any user from Marketing or Sales is sufficient to advance the document to a
different state.

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xvi

These are the choices that
are presented to Marketing in
state Treatment

These are the choices that
are presented to Sales in
state Treatment

Note that if you intervene as
the database manager, you
will see all four choices as by
default you assume all roles!

2.7) Parallel Operations
PURPOSE

There are times in a process where multiple individuals must intervene in a given state before the
document can be advanced. In the previous examples only one authorized user is sufficient to advance
those documents in the workflow. A process that requires that an individual from multiple different
groups (roles or fields) must intervene at a given point in time is referred to as a Parallel Operation. A
process that requires that all individuals from a particular group (role or field) must intervene at a
point in time is referred to as an Inclusive Operation (described in the following section). These
operations can, of course, be combined in the same state.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

Note that in a parallel operation, users can intervene in any order.

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xvii

The result after user e1
intervenes in the document.
Users green and yellow must
now both intervene in the
document for it to advance in
the workflow

Users e1 or e2 (Production),
green (Sales) and yellow
(Marketing) are all solicited
to intervene in doc POP.00006

2.8) Inclusive Operations
PURPOSE

There are times in a process where multiple individuals must intervene in a given state before the
document can be advanced. The previous section Parallel Operations treated the case where an
individual from multiple different groups must intervene at a point in time. This section treats the case
where all individuals from a particular group must intervene at a given point in time – referred to as an
Inclusive Operation. These operations can, of course, be combined within the same state.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

As with parallel operations, users can intervene in any order in an inclusive operation. Note that if you
intervene as the database manager, the document will advance regardless of who else has intervened
prior!

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xviii

All the users in Production
(users e1 and e2) are
solicited to intervene in doc

The resulting state after both
e1 and e2 intervene

2.9) Parallel and Inclusive Operations
PURPOSE

Parallel Operations and Inclusive Operations can be defined in the same state and even in the same
rule. For a description of each, reference the previous two sections.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

In the above example, all users in Production and any one user from Marketing and any one user from
Sales must intervene (in any order) at state Treatment for the document to advance..

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xix

The result after user e1
intervenes in the document
(compare this to the example
in Parallel Operations). Users
e2, green and yellow must
now all intervene in the
document for it to advance in
the process

Users e1 and e2 (Production),
green (Sales) and yellow
(Marketing) are all solicited
to intervene in doc POP.00002

2.10) Extended Parallel Operations
PURPOSE

Extended States “extend” the scope of a parallel operation. In a standard parallel operation, an
actor from each of the different constraints (i.e., roles) must intervene for the document to advance.
An extended parallel state, however, allows a document to advance along separate channels in
parallel. The easiest way to understand this concept is in terms of the above graphic. The workflow
document can advance from Line02A to Line02B without, for example, waiting for Line01A to advance
to Line01B and Line03A to advance to Line03B (or any combination therein). The document only
advances to Director, however, after the designated user(s) have all intervened in Line01B, Line02B
and Line03C.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xx

Extension
End

Extension
Start

Extension
Continue

2.11) Extended Sequential Operations
PURPOSE

Extended Sequential Operations refer to the ability to “fuse” two states together. Prior examples
have all looked at how one person advances a document in the process from one state to the next.
Even in the case where multiple users intervene in parallel, it is always the last person who selects the
Send button who determines the next state. What if, however, the next state depends on the collective
opinion of a group of users? In this case we need to make use of what we refer to as a Virtual State.
When a document advances to a Virtual State, the rules of that state are executed immediately –
effectively chaining two levels of rules together, one after the other.

WHAT IT LOOKS LIKE

In process DOC110, Marketing, Sales and Production are all solicited to intervene in documents at state
Treatment, each being presented with the above choices. The business logic is that at least two of the
three entities must validate the document for it to advance to the Director (otherwise it is sent back to
the author for modification).

HOW TO MAKE IT HAPPEN

Each time Validated is selected in state Treatment, field Count is incremented by 1 in the document.
When the document advances to Virtual01, the automatic rules are executed immediately and route
the doc based on Count.

ADDITIONAL NOTES / REFERENCES

Action definitions are contained on the third tab of a State document and explained in Section 2.14.

Horizon Ascendant, Inc. Page xxi

User e2 (Production) said no
to both documents, green
(Sales) said no to the first,
yes to the second and lastly
yellow (Marketing) said yes to
both documents

2.12) Child Documents
PURPOSE

Child documents are documents which are created from a parent document. Workflow Ascendant
can manage a hierarchy of these documents. Examples might include: a Purchase Request, which can
lead to (or create) one or more Purchase Orders, which can lead to (or create) one or more Delivery
Tickets. At document creation, each of these child documents subsequently follows its own process /
set of State documents.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

The use of invoked routines (#SetTitle in the example above) is explained in Section 4.2.

Note that you will normally want to hide the direct creation of a child document, an option which you
can select in the Language document.

Horizon Ascendant, Inc. Page xxii

When Approved is selected at
state Manager, child
document DOC111B is
automatically created

DOC111B. This document is
created (and forwarded) with
the rights/profile of Manager.

An error message is displayed
at any attempt to archive the
parent document before the
child document(s)

2.13) Email Notifications
PURPOSE

Email notifications are typically sent when a document is advanced in the workflow. These
messages can be personalized for each rule or “path” in State documents which include the: To, Cc,
Bcc, Subject and Body fields. Default values are used from the active Language document for any fields
left blank. A link back to the pertinent workflow document is automatically included at the end of each
email notification.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

Workflow Ascendant interprets the Subject and Body fields which contain executable IBM Notes
@Formula language code. The latter of these is of multi-line format where each line represents an
executable statement. In the address fields (To, cc, bcc), you can specify multiple values (one per line)
mixing any of the following formats:

• *N – indicates the next individuals slated to intervene in the document
• *A – indicates the document author
• Specific user names or group names (from the Notes Directory)
• Field names (which in turn must contain valid user names or group names)

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xxiii

Notification sent from
process DOC201 state
Director when Archive and
the Send button were
selected. Emails can be sent
in Notes or MIME format (see
Language document).

WAHistoryAuthors is a field
containing all users who have
intervened in the workflow
document to date (Cc: orange
intervened at state Manager)

2.14) Actions (Comments)
PURPOSE

The Actions tab in the State document contains definitions to set fields in the workflow document.
When the Send button in the workflow document is selected, as part of the executed designated rule,
fields are updated according to those definitions. The specific example contained herein addresses how
these definitions can be used to dedicate specific (comment) fields in the workflow document for each
contributor in the process.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

Field names on the left are updated with executable @Formula statements which are interpreted on
the right (one per line). In this specific example where the handling of comments is the object, the
reserved field names are as follows (where # corresponds to a row in the Comments table):

• CommentsLabel#A – The user name to be displayed
• CommentsLabel#B – The user role to be displayed
• SectionComments# – The users (Constraint) that are authorized to modify the comments field

for that row

ADDITIONAL NOTES / REFERENCES

Reference Appendix D for the most commonly used @Formulas used in State documents.

Horizon Ascendant, Inc. Page xxiv

Manager orange can
modify the comments
field reserved for that
role but not the
comments field reserved
for the document author
(or anyone else’s for that
matter).

2.15) Historical Text
PURPOSE

The History tab of each workflow document details each intervention along with the number of
days the document has remained with that user. The text description by default is set to the name of
the next state but can be customized. Each time an individual selects the Send button, Workflow
Ascendant adds a line to a table in that document in the tab entitled Historical:

• The user name
• The date the user advanced the document in the workflow
• A text description of what his or her action represents

WHAT IT LOOKS LIKE

DOC202 at state Director subsequent to the document being created by black and approved by Manager
orange.

HOW TO MAKE IT HAPPEN

Process DOC202 state Director with personalized historical descriptions.

ADDITIONAL NOTES / REFERENCES

Note that you will typically not want to add an historical entry in the case of a Virtual State, which you
specify as part of the State document definitions.

Horizon Ascendant, Inc. Page xxv

2.16) Document References
PURPOSE

Workflow Ascendant provides for the automatic allocation of unique and sequential references to
workflow docs. Virtually all processes require this in order to ensure the unique identity of a document
and that no document is lost. With respect to the latter, you should always archive your workflow
documents as opposed to deleting them. Reference documents are defined by version and process
version in view Workflow – References.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

Reference document DOC202. In this example, the next workflow document forwarded from state
$created$ to any other state will be assigned the prefix ROC followed by a text number of length 5
(filled with leading 0s) with the next number in the sequence (19) to be allocated: ROC.00019.

ADDITIONAL NOTES / REFERENCES

If you deploy your application on multiple servers, you will need to specify which server will allocate
this unique reference in the Language document.

Horizon Ascendant, Inc. Page xxvi

Reference ROC.00018 is
assigned to a workflow doc
belonging to process DOC202

2.17) Alert Timeouts
PURPOSE

Emails can be sent and alerts displayed if users do not intervene in a designated amount of time.
These are defined in Time Trigger documents in the Workflow – Time Triggers view. In this example
(DOC202), an email is sent to Manager (cc to Director) and an alert displayed when the document
remains in state Manager for 3 days.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

For testing purposes, you can simulate the passage of time using the controls displayed in the Admin
view of the General Web Interface.  

Horizon Ascendant, Inc. Page xxvii

Field WADelayIcon is set
to 150 (! In the view)
when the trigger is
activated, to 0 upon a

2.18) Time Based Routing
PURPOSE

Workflow documents can be automatically routed based on elapsed time. These are defined in Time
Trigger documents in the Workflow – Time Triggers view. In this example (DOC202), the document is
routed to Director when Manager does not intervene with the allotted 5 day window. Multiple Time
Trigger documents can be assigned to the same state.

WHAT IT LOOKS LIKE

!

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

For testing purposes, you can simulate the passage of time using the controls displayed in the Admin
view of the General Web Interface.

Horizon Ascendant, Inc. Page xxviii

Reference the Email
Notifications, Actions and
Alert Timeouts sections for
additional explanations

Chapter 3 – Constraints: Specifying Users

3.1) General

This chapter addresses the notion of constraints which refer to the profiles of those who can
intervene in a workflow document at a particular state. This is in contrast to Chapter 2 which dealt
exclusively with the routing of workflow documents between states. Constraints are defined in terms of
roles or fields, each of which must in turn resolve to a set of user names. Only those users defined in
The following RIs can intervene (see the graphic below) are allowed to modify the document for that
particular document state. So in the following example, when a workflow document belonging to
process DOC205 is in state Manager, only the users whose names are contained in the corresponding
workflow document field Manager can intervene (i.e., affect any modifications to that document).

Note that it is strictly a coincidence that the state name and the constraint names are identical.
Different constraints can also be defined in the same document (see Selective Operations).

In the workflow document, field WACurrentAuthors contains the list of users authorized to modify the
document at that moment in time (field WACurrentAuthorsDisplay is what is displayed in the view). If a
given user cannot edit a workflow document at a given state, it is because he or she is not listed in
WACurrentAuthors.

If a workflow document is unexpectedly archived, this normally indicates that there were no valid user
names in the state being routed to (an error condition).

Horizon Ascendant, Inc. Page xxix

3.2) Roles
PURPOSE

Role constraints refer specifically to IBM Domino roles and Role documents. The latter are contained
in view Workflow – Roles from which the ACL can be managed directly via the button Update ACL. Role
constraints must only be used in the initial State document $created$ and only role constraints should
be used therein. If role [*] is used, then any user can create a document for that process. If specific
role names are specified, then only users belonging to those roles (with the exception of [WAManager])
are allowed to create workflow documents of that type. In example DOC203 below, yellow from
Marketing and green from Sales have both created a document followed by selecting the Send button.

WHAT IT LOOKS LIKE

The above graphic to the left displays the available document creation choices for the Marketing and
Sales people. In the graphic just underneath this, however, note the absence of DOC203 from the list of
choices presented to user b1 (who doesn’t belong to either of these two groups).

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xxx

Only role constraint types
should ever be used in initial
state $created$

3.3) Fields
PURPOSE

Field constraints refer to field names contained in the corresponding workflow documents and
Field documents. The latter are contained in view Workflow – Fields. Field constraints should be used
in every State document with the exception of initial state $created$. The corresponding fields in the
workflow documents must contain one or more valid user names. In example DOC204 below, users d1
and d2 are designated as the responsible individuals (field constraint Manager) in state Manager.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xxxi

Users d1 and d2 are
designated to intervene at

DOC204 State document
Manager dictates that only
those users contained in the
workflow document field
Manager can modify the
document at that state

Users d1 and d2 are assigned
to field Manager in Field
document Manager

Routine #waSetUsersField in State document $created$ sets
the user names in the workflow document from the Field
documents on document creation (see section Document

3.3) Roles and Fields
PURPOSE

Role and Field constraints can be used in harmony. With the exception of the initial state, all
constraints in the workflow must resolve to fields containing user names. Since Field constraints are
tied to the process version (and thus would require the recopying of user names between these
documents), Workflow Ascendant provides a system to use roles which are independent of that. In
example DOC205 below, user orange is designated as the responsible individual (field constraint
Manager which derives from role Manager) in state Manager (note that while the state name happens
to be the same as that of the constraint in this example, they are in reality completely independent).

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xxxii

User orange is designated to
intervene at state Manager

The Field documents must
not contain any user names
as these names would take
precedence over any names
contained in the Role docs

Routine #waSetUsersRole in State document $created$ sets the
user names in the workflow document from the Role
documents on document creation (see section Document
Initialization) provided there is a corresponding Field

3.4) User Stack (Organizational Hierarchy)
PURPOSE

Workflow Ascendant provides the ability to implement a user stack from an organizational
hierarchy. This hierarchy can be defined in the view OU By Hierarchy in OU documents or this
information can be taken from an external source (in that case you would replace #waSetUsersMGR
below with your own routine). To note that the system accounts for hierarchies of dynamic lengths. In
this particular example, user a1 creates and sends a DOC206 document into the workflow where it
progresses through the user’s approval hierarchy.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

Reference Section 4.2 for explications regarding workflow document initialization.

Horizon Ascendant, Inc. Page xxxiii

3.5) State Stack
PURPOSE

Workflow Ascendant provides the ability to implement a state stack using Actions and an Extended
Sequential Operation. The latter, also referred to as a Virtual State, essentially acts as a subroutine
which is called by the other states. In the example below, the workflow for Marketing is State 01 to
State 02 to State 03 while that for Sales is State 03 to State 02 to State 01. These stacks are initialized
when the document is first advanced in the process and reset in State document To be modified (not
shown below).

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xxxiv

3.6) External (ERP, RDBMS …)
PURPOSE

Workflow Ascendant provides the ability to pull users in from an external data source. This external
source could be an ERP, a relational database or any number of other directories where user
information is stored. To implement extracting users from an external source, you simply complement
the built-in mechanisms of Workflow Ascendant with your own.

WHAT IT LOOKS LIKE

[This applies to any of the previous examples in this Chapter which all happen on the back-end.]

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

Reference Section 4.2 for explications regarding workflow document initialization.

Horizon Ascendant, Inc. Page xxxv

Create your subroutine in
script library WA Application
Specific

Add your subroutine to
waExecuteStoredProcedure
in this same script library

Chapter 4 – Events: Directing Execution

4.1) General

Workflow Ascendant provides the mechanisms to control every aspect of the document cycle.
Controls at a more global level such as where a document is routed and who can modify a document at
a particular state are treated in Chapter 2 – Process: Routing Documents and Chapter 3 – Constraints:
Specifying Users. This chapter deals with what occurs when a workflow document is opened, modified
and saved (sent in the workflow) including:

• Initializing the document

• Controlling who can modify which field or section of the document

• Validating field values and blocking a state advance for user data entry errors

• Validating field values prior to selecting the Send button (i.e., while the document is still
being modified)

In addition to this, you can specify what events take place when a document has gone past a certain
amount of days for a given state (or for a given section of the workflow for that matter).

Modification and validation rules are dependent by user and by state. What is modifiable and/or
obligatory at one point in the process may or may not be at a different point in the process. To that
end, Workflow Ascendant provides generic subroutines which are included in script library WA
Application Specific; you complement these with your own application specific code and reference
both in State documents (by rule - which implies by user and by what action is to be taken). These
routines use the following two fields for all error handling:

• WAErrorMessage – any text put in this field will be displayed as an error and block the
workflow document from changing state.

• FieldError – if field WAErrorMessage is not empty, then any field names put in this field will
result in a red circle being displayed next to those fields (provided you follow the
conventions in 5.3 Fields).

You can of course choose to use your own mechanisms.

Horizon Ascendant, Inc. Page xxxvi

4.2) Initialization
PURPOSE

Workflow Ascendant provides multiple ways to initialize field values in workflow documents. To do
so, you simply complement the built-in mechanisms that Workflow Ascendant itself uses with your own.
Call application specific routines in the pertinent State document using field The document will be
initialized with the following stocked subroutine(s). Any subroutines included in this list (each name
must be preceded by #) will be executed when a user modifies a workflow document at that state –
provided that the corresponding code is duly created in script library WAApplicationSpecific. In the
example below, the Title field is automatically updated with stocked text when document DOC208 is
first created (state $created$). Note that if your code updates field WAErrorMessage with text, it will
be displayed as an error message when the document is opened (in a Notes client, the opening of the
document is also blocked).

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

For updating document fields at state change, reference section Actions (Comments).

Horizon Ascendant, Inc. Page xxxvii

In the same script library,
include the call to your
code in the following
subroutine:
waExecuteStoredProcedur
e

4.3) Modification Control (Field)
PURPOSE

Workflow Ascendant provides ways to control who can modify which fields in a document. In the
Workflow tab of a State document further below, fields under Users are set dynamically by
#waSetUsersRole and fields under Modifiable Fields are used dynamically by #waInitModFields. To
render these definitions effective, you will need to add XPages and/or Notes controls for each field
which operate independently (meaning use one or the other or both depending on the clients you use
to access the application). In example DOC209 below, only Marketing can modify Field04.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

Reference Section 4.2 for explications regarding workflow document initialization.

Horizon Ascendant, Inc. Page xxxviii

Put the field names to be
controlled in fields Field<name>.
These will be copied into field
FieldModifiable by routine
#waInitModFields when the
corresponding RIs (under Users)
modify the document, rendering
the applicable fields modifiable in
the document.

4.4) Modification Control (Panel/Section)
PURPOSE

Workflow Ascendant provides ways to control who can modify which portions of a document. In the
Workflow tab further below, fields under Users are set dynamically by #waSetUsersRole and panels
under Modifiable Tabs are used dynamically by #waInitModTabs. To render these definitions effective,
you will need to add XPages and/or Notes controls for each panel/section which operate independently
(meaning implement those applicable to the clients you use to access the application). In example
DOC209 below, only CEO can modify Tab03.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

Reference Section 4.2 for explications regarding workflow document initialization.
isTabReadOnly(this.getId())

Horizon Ascendant, Inc. Page xxxix

Put the tab names to be controlled
in fields Tab<name>. These will be
copied into field TabModifiable by
routine #waInitModTabs when the
corresponding RIs (under Users)
modify the document, rendering
the applicable panels or sections
modifiable in the document.

4.5) Validation Control (General)
PURPOSE

Workflow Ascendant provides a general, built-in field validation mechanism. It verifies by state that
designated fields contain a value - but only if the current user has the ability to modify those fields. To
that end, this mechanism must be used in conjunction with Modification Control (Field). Should this not
meet your requirements, reference the following section Validation Control (Custom). In the example
DOC210 below, the Field04 field must contain a value for the document to advance. Note that
[WAManager] is not controlled by default!

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xl

4.6) Validation Control (Custom)
PURPOSE

Workflow Ascendant provides for custom validation mechanisms. Call your application specific
subroutines in the pertinent State document using field The document will be blocked from
advancing if…. Any subroutines included in this list will be executed when the Send button is selected
at that state – provided that the corresponding code is duly created in script library
WAApplicationSpecific. In the example below, Field 1 and Field 2 must contain identical values when
document DOC211 is forwarded (state $created$).

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

For information regarding the ItemList class, reference Appendix E – List Classes.

4.7) In-State Controls
PURPOSE

Horizon Ascendant, Inc. Page xli

Workflow Ascendant provides a template from which you can control events which occur outside of
a state change. The agent myInStateFieldControl is provided as a model you can use to customize for
your own specific application requirements. In example DOC211 below, an error condition is flagged
when button Test Fields is selected if fields Field07 and Field08 do not contain identical values.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

For additional information on the field configuration of the “red circle” mechanism, refer to Section
5.3.

Horizon Ascendant, Inc. Page xlii

This agent executes
subroutine MyControlTest
(essentially identical to
that in the previous
section) on the in-memory
(virtual) document

4.8) Timed Events
PURPOSE

Workflow Ascendant provides the capability to launch events based on elapsed time. These are
defined in Time Trigger documents in the Workflow – Time Triggers view. In example DOC211 below, the
application log is updated by agent (WA Test Agent) when the document remains in state CEO for 3
days. In addition to launching agents, you can specify stocked subroutines (the names of which to be
preceded by #) in script library WA Application Specific.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xliii

In this example, all fields in
Notifications and Actions are
empty. To display alerts and/
or route documents as timed
events, reference Sections
2.17) Alert Timeouts and
2.18) Time Based Routing.

Text written to the agent log
provided that this has been
created and configured in the
Language document.

Chapter 5 – Content: Managing Data

5.1) General

This chapter addresses document content – the information to be routed in the process. Described
in detail in the previous chapter, Workflow Ascendant uses a system to facilitate controlling who can
modify which portions of a document in addition to what information the document must contain. This
chapter exposes the mechanics of that system as well as walk through various data structures
commonly found in workflow documents:

• Various field types
• Simple dynamic lists
• Tiered dynamic lists
• Tables
• Bar Charts
• Gantt Chart
• Selective visibility

Custom Control zcontent_DocFields contains the basic XPages field types that are available. If you
are not familiar with XPages, you may want to consider coping/pasting fields from there into your
Custom Control along with the “red circles” in order to take advantage of the Workflow Ascendant
Error Handling mechanism. That, of course, is your choice. If you do choose to take components
directly from the Controls menu, take care to ensure that you do not have any Data sources specified
when you save the Custom Control.

It is recommended that you create new XPages and Custom Controls from existing ones. From there
it is a relatively straightforward process to change the names referenced therein in the XML Source
panes/tabs.

Horizon Ascendant, Inc. Page xliv

No Data sources specified. In
the Workflow Ascendant design
schema, no “content” Custom
Control (i.e., those contained in
a workflow document) should
contain a data source.

The Design and Source panes.
This example is taken from the
context of creating new XPage
Document02 from Document01.

5.2) Field Types
PURPOSE

There is a variety of field types at your disposal. Notes Form Document02 Tab 2 and XPage Tab 2
(Custom Control zcontent_DocFields) contain the primary / most frequently used ones that you can
copy and paste from.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page xlv

5.3) Fields

  

Horizon Ascendant, Inc. Page xlvi

5.4) Panels / Sections

Horizon Ascendant, Inc. Page xlvii

5.5) Document Layouts

Horizon Ascendant, Inc. Page xlviii

5.6) Simple List Creation
PURPOSE

Providing lists for users to select from minimizes data entry error. Making those lists dynamic (i.e.,
easily modifiable) facilitates application maintenance. See Section 5.7 Simple List Usage for how to
make these lists available for user selection in the application. This example converts generic “List 1”
to “Region”.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

Horizon Ascendant, Inc. Page xlix

5.7) Simple List Usage
PURPOSE

Providing lists for users to select from minimizes data entry error. Making those lists dynamic (i.e.,
easily modifiable) facilitates application maintenance and minimizes user data entry errors. See
Section 5.6) Simple List Creation for how to create these lists. This can be seen in action by creating a
document in process DOC212 (Document02 Tab 3). This example converts generic “List 1” to “Region”.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

Horizon Ascendant, Inc. Page l

5.8) Tiered List Creation
PURPOSE

Providing lists for users to select from minimizes data entry error. Making those lists dynamic (i.e.,
easily modifiable) facilitates application maintenance. See Section 5.9) Tired List Usage for how to
make these lists available for user selection in the application. This example converts generic “List 2”
to “Sector”.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

Horizon Ascendant, Inc. Page li

5.9) Tiered List Usage
PURPOSE

Providing lists for users to select from minimizes data entry error. Making those lists dynamic (i.e.,
easily modifiable) facilitates application maintenance and minimizes user data entry errors. See
Section 5.8) Tiered List Creation for how to create these lists. This can be seen in action by creating a
document in process DOC212 (Document02 Tab 3). This example converts generic “List 2” to “Sector”.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

Horizon Ascendant, Inc. Page lii

5.10) Tables
PURPOSE

Workflow Ascendant provides a convenient way to insert tables into applications. Insert the
matching Custom Control and Subform into the desired panels/tabs of the application and set the
configuration fields to display the table accordingly. To note that obligatory fields must be of the
format "T01_DBField04" for table 1, column 4 (example). This can be seen in action by creating a
document in process DOC211 (Document01 Tab 6).

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

Horizon Ascendant, Inc. Page liii

5.11) Bar Charts

Bar Charts is a generic mechanism to display statistics graphically. The example below provided by
default will produce a bar chart displaying statistics on users who exceed their allotted time to
intervene in workflow documents. Intermediate documents are created in view Chart Data\Count 01
from the workflow documents which, in turn, are used to generate the graphics (this to optimize
performance for end users). Agent WA Update Chart Docs Count01 creates those documents nightly, but
they can also be updated manually by [WA Manager]. Create additional statistics by adding the
relevant information to the WA Language document, creating the new view and adding the relevant
routines (corresponding to UpdateChartDataCount01 and ChartSetCount01) in script library WA Chart.

Horizon Ascendant, Inc. Page liv

This Time Trigger Action adds
all the current authors of a
workflow doc to field
WAChartCount01 when the
allocated time has been

5.12) Gantt Charts
PURPOSE

Gantt Charts is a plug-and-play mechanism to display project milestone progress graphically. To
that end two different charts are provided: by date and by % progress. In the example below, a
document in process DOC213 (Document02 – reference the Language document) is configured to
produce the below Gantt chart.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

To render this functionality operational, the following needs to take place:
• Create the Gantt Task Name documents in view Workflow – Gantt Tasks
• Insert Subform content_DocWFGantt into the Notes form (Document01 for example)
• Insert Custom Control content_DocWFGantt into the desired panel of content_DocWF01

(example)
• In state $created$ (example), insert the initialization routine #waInitGanttFields.
• Use the provided input mechanisms to modify all default dates (01-Jan-00) accordingly - this

in turn will change the ready indicator from yellow to green which allows the chart to
display

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page lv

5.13) Panel/Tab Visibility
PURPOSE

There are times when some portions of a document need to be selectively displayed depending on
the user’s profile. To note that the mechanisms for a Web client and the Notes client are independent.
In example DOC214 below, only CEO and [WAManager] can view Tab 6.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

Horizon Ascendant, Inc. Page lvi

5.14) Document Visibility
PURPOSE

There are times when some documents need to be selectively displayed depending on the user’s
profile. To note that there is one mechanism that works for both a Web client and the Notes client. In
example DOC215 below, users can only see documents that are assigned to them and that progressively
as documents advance in the process. Note that [WAManager] and [WASupervisor] can see all
documents at all times due to the initial assignment in state $created$.

WHAT IT LOOKS LIKE

HOW TO MAKE IT HAPPEN

ADDITIONAL NOTES / REFERENCES

Reference Section 2.14 for explications regarding specifying Actions in State documents.

Horizon Ascendant, Inc. Page lvii

Chapter 6 – General References

6.1) General Web Interface

Horizon Ascendant, Inc. Page lviii

6.2) Notes Admin Interface

The various graphics below present the development administration interface as it relates to managing
the process.

Horizon Ascendant, Inc. Page lix

6.3) Workflow Document

Horizon Ascendant, Inc. Page lx

6.4) Delegation Document

Workflow Ascendant provides real-time delegation. Users create a Delegation document for
themselves indicating the time frame of their absence along with the person to be designated to. The
database manager can create Delegation documents for others. When the delegation becomes
effective, the delegated to party receives an email to that effect (and vice-versa when the delegation
period has passed).

Horizon Ascendant, Inc. Page lxi

Note that [WAManager] can
modify the Author field
(above) to create Delegation
documents for other users

While the agent to enact
delegation normally
executes at night, the
database manager can
activate this manually to
take immediate effect

6.5) Admin ACL Entry Document

ACL Entry documents provide a centralized access to the database global access rights. Any changes
you make here should be followed by selecting the Update ACL button. You will want to set the Server
document to the name of your server and the Managers document with the names of all those required
to manage the application. For application specific roles, reference Section 6.10. To note for Workflow
Ascendant to properly control who can modify a document at a given point in the process, those who
intervene must be set access level Author (the default as set below).

Horizon Ascendant, Inc. Page lxii

6.6) Admin Field Document

Each constraint used in a given workflow must contain a corresponding Field document for the
delegation function to work properly. As in most Workflow Ascendant Admin documents, these are
defined by Version and Form Name. For processes already in production, any changes to this list should
only be done in the context of a new workflow version (e.g., V02).

 

Horizon Ascendant, Inc. Page lxiii

Use Members in conjunction with
#waSetUsersField to initialize
your constraint fields (i.e., who
performs which roles in the

Changes made to Field documents while workflow docs are in production
(same version, same process) may result in application failure.

6.7) Admin Gantt Task Document

Gantt Task documents form the task list to be used in creating Gantt charts. Use these in
conjunction with Subform content_DocWFGantt and Custom Control content_DocWFGantt. For a chart
to be rendered displayable, all default dates (01-01-2000) must be set to a different value (which will
turn the ready indicator from yellow to green). As in most Workflow Ascendant Admin documents, these
are defined by Version and Form Name. As these documents are only accessed upon workflow
document creation, any changes to this list will not require enacting a new workflow version (e.g.,
V02).

Horizon Ascendant, Inc. Page lxiv

Use Display Order to
specify the order in which
tasks will be displayed in
the view and in the
corresponding Gantt chart.
Description is solely
included here for
documentation purposes.

6.8) Admin Language Document

The active Language document dictates much of the behavior of Workflow Ascendant. The graphics
included below illustrate options that affect basic operations. All other sections here provide you the
opportunity to rename objects displayed in the application - or even create a new Language document
to display all in the language of your choice.

Horizon Ascendant, Inc. Page lxv

Information from the Notifications tab will be
included in emails where you leave one or
more of these fields empty in the State
document. To note that text in blue is
interpreted (i.e., these are executable
statements). Select Verify Definitions to
ensure that what you have specified is
syntactically correct.

6.9) Admin Reference Document

Reference documents provide a means to allocate a unique and sequential reference to workflow
documents. This ensures a consistent way to identify documents and verify that none are missing (note
that a workflow document should never be deleted – only archived). References are virtually always
required to be assigned to a workflow document when it is first launched into a process (as in the
example below) but you can specify a different state if desired.

Horizon Ascendant, Inc. Page lxvi

In the above example, the next
DOC201 workflow document to be
created and sent into the workflow
will be allocated reference FDC.
00041.

6.10) Admin Role Document

Role documents should generally be used in conjunction with Field documents. With the exception
of the initial state, all constraints in the workflow must resolve to fields containing user names. To
properly implement this Role-Field system, include #waSetUsersRole in initial State document
$created$ and name the following identically:

• Field Doc. Example: CEO
• Role Doc. Example: [CEO]
• Field in the workflow document: CEO (multivalued: Name type in Notes, Text type in XPages)

In this example then, field CEO will automatically be set to blue/Horizon when the document is
created, keeping in mind however that this information is taken from the Role document – not the ACL.
Updating the ACL allows for proper handling of the initial state only.

Horizon Ascendant, Inc. Page lxvii

Of course you can use roles to show/
hide various portions of your

[*] indicates all users in State

6.11) Admin State Document

A State document dictates how a workflow document is to respond at that state. A collection of
State documents represents the application process. In the example below, the document is initialized
by routine #waInitModFields when Manager opens the workflow document. In selecting the button
Send, there are 3 choices to choose from: To be modified, Rejected and Approved. If the latter is
selected and field Total in the workflow document is set to 1000 and routine #waCntMandFields does
not flag an error (rule b), then the workflow document is updated from the Actions tab (field
CommentsLabel01A, …), the default email from the Language document is sent (as the Subject and
Body fields are left blank) to those responsible to intervene in the next state (*N = Next), and the
document is routed to state CEO.

Horizon Ascendant, Inc. Page lxviii

6.12) Admin Time Trigger Document

Time Trigger documents define actions to be taken when a document resides in a state (or in a
series of states) for a designated amount of time. In the example below, if a workflow document
belonging to process DOC202 remains in any state for 3 days, then an email is sent to those who
haven’t yet intervened (contained in field WACurrentAuthors) with Director on cc, an alert is set in the
view (view document field WADelayIcon) and WAChartCount01 is updated with the names of the “guilty
parties” (a statistics monitor – you can create your own).

Appendix A – Licensing

Horizon Ascendant, Inc. Page lxix

Workflow Ascendant is the proprietary software owned by Horizon Ascendant Inc, including any
Documentation and any Support and Maintenance releases of the same Software. This software tool is
used to create Business Process Management (BPM) applications. Your use of this Software and derived
applications from the Software is subject to the terms and conditions of the Workflow Ascendant
Master Subscription License Agreement (located on the Horizon Ascendant web site:
www.horizonascendant.com). Please review the terms of this document carefully. By using the
Software and/or derived applications, you agree to all of the terms contained therein.

This section is solely intended to highlight the financial conditions regarding the use of Workflow
Ascendant.

Applications developed with Workflow Ascendant are licensed on a subscription basis. A separate
license must be purchased for each nsf file which uses code from Workflow Ascendant: 95€ / month.

Horizon Ascendant, Inc. Page lxx

Appendix B – Administration

TASKS
• Modifying workflow documents data. The Database Manager should be assigned role

[WAManager] with access level Manager. Provided the application was developed following
Workflow Ascendant recommendations (contained in this document), this user can modify
any modifiable field in the document similar to the designated user in the workflow. Keep in
mind however that the Database Manager assumes by default all roles in the process, which
means in the case where there are multiple users intervening simultaneously at a given
state, this can have unexpected/unintended results.

• Modifying data fields. The Database Manager can modify any field in documents by
selecting the menu Actions – WA Modify Field (Notes client only). Select either specific
documents or none to affect all documents in the database.

• Changing a user name. Change a user name for workflow documents by selecting the menu
Actions – WA Change User Name (Notes client only). This can be particularly useful if
someone leaves the company and active workflow documents need to be assigned to a
different user (preferable to creating a long-term delegation).

• Creating Delegation documents. The Database Manager can create a delegation document
for another user. Surprising how often this happens. Or not. Note that new delegations are
taken into account during the early morning hours of the following day when the scheduled
agent which handles this is launched.

• Forcing delegations. The Database Manager can force delegations to be applied
immediately (rather than wait until the following day). This can be performed most easily
from the Delegations view by selecting the button Run Agent. Reference the Admin View in
General Web Interface.

• Deleting workflow documents. The Database Manager can delete workflow documents
directly from the Admin view by selecting the document(s) to be deleted followed by the
Delete button. It is highly recommended however not to delete any workflow documents. If
it is the most recent workflow document created, consider resetting the corresponding
Reference document in order not to have any “holes” in the document numbering.

• Updating chart data. Similar to Delegation documents, chart data (statistics) is
automatically updated during the night. Should you need to have the latest, up-to-the-
minute data, you can do update this data from the Admin view – Chart Data screen.

• Forcing state changes. The Database Manager can force the state of a workflow document
by selecting it followed by the Force Change State view action button (Notes client only).
This operation is particularly useful when a user mistakenly archives a document.

• Logging events. You can keep track of various events by enabling logging in the active
Language document. This option should generally be turned off as during production as the
log can become quite large (particularly on the verbose setting).

CONFIGURATION
• In the active Language document, you can configure Workflow Ascendant in a number of

different ways including: changing the language, changing the date format, exclude
weekends and holidays from the day counter, change how buttons and messages are
displayed, how default emails are presented and so on.

Horizon Ascendant, Inc. Page lxxi

Appendix C – Debugging

GENERAL
Domino Designer is equipped with a powerful debugging tool to debug your LotusScript code.
Wherever possible, consider first putting your code in a Notes client button and verify the code
there before executing it from an agent.

• Your application specific code. Application specific code to be executed when a workflow
document is either opened or when the Send button is selected by the user should be
referenced in the appropriate place in the State documents and defined in script library WA
Appl icat ion Specif ic (the ca l l s to which to be inc luded in subrout ine
waExecuteStoredProcedure). These subroutines can update document data and/or block a
document from advancing in the workflow. All such code is executed via agents
(waInitializeWorkflowEngine) and (waInitializeWorkflowEngine). Should you need to pass
arguments to these routines, use designated fields to that effect in the workflow document.

• Computed Form field values. Computed formulas and default values will take effect as the
computeWithForm option is set to both (referring to the onload and onsave events) in XPage
Document# by default.

• (waInitializeWorkflowEngine). This LotusScript agent is launched from the XPage
Document# beforePageLoad event. This agent in turn calls the PostOpenDoc (WA Workflow
script library) which in turn executes any routines you have referenced in the State
documents and defined in script library WA Application Specific (the calls to which to be
included in subroutine waExecuteStoredProcedure).

• (waRunWorkflowEngine). This LotusScript agent is launched from the XPage Document#
postSaveDocument event. This agent in turn calls routines you have referenced in the State
documents and defined in script library WA Application Specific (the calls to which must be
included in subroutine waExecuteStoredProcedure).

Workflow Ascendant is equipped with a complete set of logging features. Provided you have
configured the log correctly (creating the Agent Log database and referencing it in the active Language
document), you can put the following command in your application specific code in order to view
variables / field values in the log:

Call a_LogWrite(“Got Here”)
Call a_LogWrite(doc.MyField(0))
Etc.

JAVASCRIPT
This will concern any specific transactions that take place within the context of a given state.
Workflow Ascendant largely limits the usage of javascript to pulling values from the XPage and passing
them on to LotusScript agents. Should you use that approach, the a_LogWrite command can first be
used to verify that you’re getting the values correctly into your agent. For any debugging to be done
prior to (or after) that, you can use the following command to output variables to the Domino console:
 print(“Got Here”)

There are also downloadable tools available on the web to display scoped variables.

Horizon Ascendant, Inc. Page lxxii

Appendix D – @Formulas and Reserved Field Names

MOST COMMON @FORMULAS
• +. Separator used to concatenate strings. Keep in mind that Actions and Notification

Subjects must be contained in a single line (unlike a Notification Body which can consist of
several lines).

• <, <=, =, !=, >=, >. Comparative operators which can be used in automatic routing rules as
well as Actions.

• @Char(34). Translates to the “ character.

• @If(condition; true; false). Conditional statements which can be used in Actions.

• @Name([CN]; @UserName). The current user name – used in Notifications and Actions.

• @Text(@Today). The current date – used in Notifications and Actions.

• @Today. The current date – used in Actions where the date format needs to be preserved.

• @Unique(WAReaders : @UserName). Used to set the WAReaders field to progressively
provide visibility to a workflow document (be sure to include also [WAManager] and
[WASupervisor] initially to provide those users visibility).

• @UserName. The current user name – used in Actions where the full formal name needs to
be preserved.

• And. Logical operator which can be used in automatic routing rules.

• Or. Logical operator which can be used in automatic routing rules.

• Not. Logical operator which can be used in automatic routing rules.

FIELD NAMES
• WAAuthor. The user name of the individual who created the workflow document.

• WACurrentAuthors. The list of user names who can intervene in the document at that
moment in time.

• WACurrentAuthorsDisplay. The list of current user names displayed to the end users in the
various views.

• WACurrentState. The name of the workflow document’s current state.

• WADocRef. Contains the unique reference allocated to the workflow document.

• WAErrorMessage. Contains any error messages which block advancing the document in the
workflow.

• WAFormName. The process name displayed to the end users.

• WAHistoryAuthors. The list of users who have intervened in the workflow document to
date.

• WAReaders. The list of users who can visualize the workflow document (in addition to those
who have or who can modify the workflow document).

• WAVersionRef. The version of the workflow document.

Horizon Ascendant, Inc. Page lxxiii

Appendix E – List Classes

DECLARATION / INITIALIZATION
Dim listL As ItemList Declares listL as a list (class).
Dim listL As New ItemList Declares and initializes listL as a list (class).
Call List_Initialize (listL) Initializes list listL.
 I n i t i a l i z a t i o n i s n o t n e c e s s a r y f o r
List_SetListFromDocField

BASIC FUNCTIONS
Call listL.DeleteNthItem(index) Deletes the item at position index in list listL.
Call listL.InsertNthItem(index, newItem) Inserts a new item at position index in list listL.
myItem = listL.PopOffItem Pops off the last item in list listL.
Call listL.MoveDown(index) Moves the listL entry at position index down in the list.
Call listL.MoveUp(index) Moves the listL entry at position index up one
in the list.
Call listL.PushOnItem(newItem) Adds a new item to list listL.
Call listL.ReplaceNthItem(index, newItem) Replaces the item at position index in list listL.

ROUTINES
Call List_CopyItems(item | listL, resultL) Appends an item (or items in listL) to list
resultL.
Call List_GetIndexesFromItems(item, listL, index) Returns the position index of item in listL (0 if
not present).
If List_IsMember(item, listL) Then... Returns True if item is found in listL.
Call List_OrderList(listL, resultL) Alphabetically orders listL in resultL.
Call List_SetDocFieldFromList(doc, "Field01", listL) Sets doc field Field01 (multi-value field!) with
listL.
Call List_SetListFromDocField(doc, "Field01", listL) Sets listL with the contents of document doc
field Field01.
Call List_SetStringFromList(listL, ".", result) Converts listL to a string in variable result
using separator “.”.

LOOP OPERATION
For index = listL.GetFirstIndex To listL.GetLastIndex

currentItem = listL.GetNthItem(index)
Next

STACK OPERATION
While Not listL.IsListEmpty

currentItem = listL.PopOffItem
Wend

Horizon Ascendant, Inc. Page lxxiv

Appendix F – Script Library (WA Application Specific)

It is highly recommended that you do not modify subroutines beginning with “wa…”. The following is a
list of these subroutines (at the time of this writing) along with a description as to their purpose.

• waCntMandFields. Controls mandatory fields (see routine waSetErrorFlags for details).
Used with "red circle" error indicators.

• waExecuteStoredProcedure. Contains a list of routines referenced in the State documents.
Any new routines accessed by the State documents must be added here in order to be
executed.

• waExecuteStoredProcedureChild. Contains a list of routines referenced in the State
documents. Any new routines accessed by the State documents must be added here in order
to be executed

• waInitGanttFields. Initializes the fields used in a Gantt chart.

• waInitModFields. Sets which fields in the workflow document the current user can modify.

• waInitModTabs. Sets which tabs in the workflow document the current user can modify.

• waSetErrorFlags. Returns true if mandatory fields are not set and updates the workflow
document with the following: WAErrorMessage (contains the error message to display) and
FieldError (contains a list of fields to display the corresponding red circle error indicator).

• waSetFieldListFromFieldDocs. Internal routine which sets a list of field names derived from
the Field documents.

• waSetFieldUserListFromRoleDocs. Internal routine which sets a list of field names derived
from the Role documents.

• waSetListModifiable. Internal routine which gets the list of modifiable fields for the current
user.

• waSetRedCirclesNotes. Sets the red circle indicators for Notes clients.

• waSetUsersField. Copies all users from the Field documents to the Workflow tab of a
workflow document provided that the corresponding fields in the workflow document are
empty.

• waSetUsersMngr. Copies all managers of the current user from the OU documents to the
workflow document. Generates an error if the manager of the user is undefined.

• waSetUsersRole. Copies all users from the Role documents to the Workflow tab of a
workflow document provided that: 1) There are corresponding Field docs for those roles;
and 2) The corresponding fields in the workflow document do not contain a value.

Horizon Ascendant, Inc. Page lxxv

Appendix G – JavaScript

Custom Control zcontent_DocCode contains a sample of some commonly used JavaScript code. In
addition, the following links connect to web pages containing sample code for the various JavaScript
commands available for XPages:

• NotesDocument Sample JavaScript Code for XPages
• NotesView Sample JavaScript Code for XPages
• NotesDatabase Sample JavaScript Code for XPages

1

2 var doc:NotesDocument = document1.getDocument(true)
viewScope.test01 = doc.getItemValueString("Field11")

3 viewScope.test02 = document1.getValue("Field11")

4 getComponent("Field11").setValue("Server Side JS")

5 viewScope.getXPFieldSSJS = getComponent("Field11").getValue()

6 var element = XSP.getElementById('#{id:Field11}')
element.value = "Client Side JS"

7 var myVar = document.getElementById("#{id:Field11}").value
var element = XSP.getElementById('#{id:Field11}')
alert(myVar)
alert(XSP.getFieldValue(element))

8 var myVar = document.getElementById("#{id:backendValueEL}").innerHTML
alert(myVar)

9 var userResponse = prompt("Please enter your response:","<response>")
XSP.getElementById("#{id:userResponse}").value = userResponse

10 var doc:NotesDocument = document1.getDocument(true)
var docVirtual = database.createDocument()
var agent:NotesAgent = database.getAgent("(sampleAgentCallFromXPages)")
docVirtual.replaceItemValue("TestField", doc.getItemValue("Field12"))
agent.runWithDocumentContext(docVirtual)
document1.setValue("Field12", docVirtual.getItemValue("TestField"))

Horizon Ascendant, Inc. Page lxxvi

https://www-10.lotus.com/ldd/ddwiki.nsf/dx/NotesDocument_sample_JavaScript_code_for_XPages
https://www-10.lotus.com/ldd/ddwiki.nsf/dx/notesview_sample_javascript_code_for_xpages
https://www-10.lotus.com/ldd/ddwiki.nsf/dx/notesdatabase_sample_javascript_code_for_xpages

Appendix H – Methodology

More than 90% of the development in Workflow Ascendant is done in classic IBM Notes. While
following are the basic steps, the best approach is generally to copy/paste/adapt existing generic State
documents which you have already tested. The XPage layer is (optionally) added at the end of the
process once you have an operational application for the Notes client. For your very first application,
you will need to sign the model database, configure the basics in the Language document, set the basic
Workflow - ACL Entries and create an agent log (optional).

1. Notes database. Make a Notes copy of the database according to your requirements (including
modifying Page WA Left to reflect the name of your database).

2. Language document. In the Documents tab of the active Language document, set the Alias
(how the process will be known to your end users) and corresponding Notes Form Name for
each of the processes to be included in the database. Logging Type should be set to Verbose
and Hide Workflow Tab to No.

3. Field and Role documents. Create these documents once you have identified the various
profiles of those who will intervene in the various processes. Creating these first allows you to
select these values from a list in the State documents (although that is strictly optional).
Consider setting default values (a1/Horizon, blue/Horizon …) in these fields for subsequent
testing.

4. Notes Forms. Modify the existing Notes Forms (one per process) from existing ones forms:
• Workflow Tab. Create all the Constraint fields defined in the previous step. Consider

setting default values (a1/Horizon, blue/Horizon …) in these fields for initial testing.
• Fields. Create fields in the form which will affect the process (i.e., how documents are

routed).
5. State documents. Create the State documents (always using the button Verify to verify that

your definitions are coherent), concentrating on the basic manual and automatic routing rules:
• The following RIs can intervene…
• And forward to the following states…
• Which will be displayed as…
• The following state will be routed to automatically…

6. Notes workflow testing. Select the Verify button in the view to ensure that the process is
coherent before testing. At the end of this step the basic workflow should be operational (note
that the users placed as default values in Step 4 will be used, not those in the Field and Role
documents).

7. Notes initialization testing. Include in each state document $created$ (one for each process)
the routines you plan to invoke when a workflow document is created (e.g., #waInitModFields,
#waInitModTabs, …) in field The document will be initialized with the following stocked
subroutine(s)… Remove the default values from Step 4 and verify that the expected users from
Step 3 are correctly inserted into the appropriate fields on the Workflow tab (there is no need
to test the workflow at this point).

8. Finalize Notes Forms. Create the rest of the fields in the Notes forms not completed in Step 4.
9. Control routines. Add any custom control routines to script library WA Application Specific and

reference these (as well as any of those provided by default) in the various State documents.
10. Window dressing. Complete the State document Notifications and Actions tabs, as well as

customizing presentation related information (Historical Description …).
OPERATIONAL NOTES CLIENT WORKFLOW APPLICATION

1. XPages components. Copy/paste XPages and Custom Controls to correspond to the Notes
application created above.

2. XPages fields. Copy/paste fields into the appropriate Custom Controls.
3. Visibility. Apply mechanisms to selectively hide documents and/or portions of the workflow

documents.
4. Deployment. Once you deploy applications, be sure to use design templates, naming them

accordingly to facilitate design roll-back (e.g., MD.Promo.2018.02.15.ntf).
OPERATIONAL WEB CLIENT WORKFLOW APPLICATION

Horizon Ascendant, Inc. Page lxxvii

	Chapter 1 - Introduction
	1.1) General
	1.2) Benefits
	1.3) Principles
	1.4) Roles and Reserved Names
	1.5) Recommended Practices
	1.5) About This Guide
	Chapter 2 – Process: Routing Documents
	2.1) General
	2.2) Simple Document Routing
	2.3) Manual Document Routing
	2.4) Automatic Document Routing
	2.5) Manual and Automatic Document Routing
	2.6) Selective Operations
	2.7) Parallel Operations
	2.8) Inclusive Operations
	2.9) Parallel and Inclusive Operations
	2.10) Extended Parallel Operations
	2.11) Extended Sequential Operations
	2.12) Child Documents
	2.13) Email Notifications
	2.14) Actions (Comments)
	2.15) Historical Text
	2.16) Document References
	2.17) Alert Timeouts
	2.18) Time Based Routing
	Chapter 3 – Constraints: Specifying Users
	3.1) General
	3.2) Roles
	3.3) Fields
	3.3) Roles and Fields
	3.4) User Stack (Organizational Hierarchy)
	3.5) State Stack
	3.6) External (ERP, RDBMS …)
	Chapter 4 – Events: Directing Execution
	4.1) General
	4.2) Initialization
	4.3) Modification Control (Field)
	4.4) Modification Control (Panel/Section)
	4.5) Validation Control (General)
	4.6) Validation Control (Custom)
	4.7) In-State Controls
	4.8) Timed Events
	Chapter 5 – Content: Managing Data
	5.1) General
	5.2) Field Types
	5.3) Fields
	5.4) Panels / Sections
	5.5) Document Layouts
	5.6) Simple List Creation
	5.7) Simple List Usage
	5.8) Tiered List Creation
	5.9) Tiered List Usage
	5.10) Tables
	5.11) Bar Charts
	5.12) Gantt Charts
	5.13) Panel/Tab Visibility
	5.14) Document Visibility
	Chapter 6 – General References
	6.1) General Web Interface
	6.2) Notes Admin Interface
	6.3) Workflow Document
	6.4) Delegation Document
	6.5) Admin ACL Entry Document
	6.6) Admin Field Document
	6.7) Admin Gantt Task Document
	6.8) Admin Language Document
	6.9) Admin Reference Document
	6.10) Admin Role Document
	6.11) Admin State Document
	6.12) Admin Time Trigger Document
	Appendix A – Licensing
	Appendix B – Administration
	Appendix C – Debugging
	Appendix D – @Formulas and Reserved Field Names
	Appendix E – List Classes
	Appendix F – Script Library (WA Application Specific)
	Appendix G – JavaScript
	Appendix H – Methodology

